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Fecal microbiome signatures of 
pancreatic cancer patients
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Yoram Kluger3, Naama Reshef4, Hilla Knobler4, Yaakov Maor5, Assaf Stein6, 
Fred M. Konikoff6,7 & Uri Gophna   2*

Pancreatic cancer (PC) is a leading cause of cancer-related death in developed countries, and since 
most patients have incurable disease at the time of diagnosis, developing a screening method for 
early detection is of high priority. Due to its metabolic importance, alterations in pancreatic functions 
may affect the composition of the gut microbiota, potentially yielding biomarkers for PC. However, 
the usefulness of these biomarkers may be limited if they are specific for advanced stages of disease, 
which may involve comorbidities such as biliary obstruction or diabetes. In this study we analyzed the 
fecal microbiota of 30 patients with pancreatic adenocarcinoma, 6 patients with pre-cancerous lesions, 
13 healthy subjects and 16 with non-alcoholic fatty liver disease, using amplicon sequencing of the 
bacterial 16S rRNA gene. Fourteen bacterial features discriminated between PC and controls, and 
several were shared with findings from a recent Chinese cohort. A Random Forest model based on the 
microbiota classified PC and control samples with an AUC of 82.5%. However, inter-subject variability 
was high, and only a small part of the PC-associated microbial signals were also observed in patients 
with pre-cancerous pancreatic lesions, implying that microbiome-based early detection of such lesions 
will be challenging.

Pancreatic cancer (PC) is the 4th and 5th leading cause of cancer-related death in the USA and the EU, respec-
tively1,2. In contrast to the reduction in the incidence of colon cancer due to screening and early detection, PC 
age-standardized rates have remained stable, suggesting that an improvement in life expectancy can be gained 
only through development of novel therapeutic approaches or through prevention\earlier detection3. As it is 
estimated that pancreatic cancer develops over longer than a decade4,5, a window of opportunity for early inter-
vention does exist.

The main route of prevention\early detection of PC at present relies on advanced pancreatic imaging to detect 
pre-cancerous lesions6,7. As this method is difficult to implement in wide-range screening of large populations, 
considerable effort is being invested in identification of molecular, proteomic or metabolomic signatures in body 
fluids8, which may be used as biomarkers for early PC.

An additional strategy for development of precancerous markers is to identify alterations in the microbial 
populations resident in the human body, commonly referred to as “microbiomes”. Farrel et al.9 were first to 
demonstrate alterations in the oral microbiome of PC patients when compared to healthy controls; however, with 
a best-case specificity of 82.1%, this microbial signature, while impressive, was not strong enough for diagnosis of 
a rare-incidence disease such as PC. While the oral microbiome is probably only indirectly related to pancreatic 
function, the gut microbiome is directly affected by pancreatic secretions that fundamentally affect digestion and 
metabolism. Therefore, even minor changes to pancreatic tissue could cause alterations in intestinal metabolite 
concentrations, which are highly likely to be sensed by the intestinal microbial communities. As the gut micro-
biome can be easily profiled by a fecal sample on a semi-automated platform, this approach is appealing in its 
simplicity, and has been recently put forward by Ren et al.10, in a study comparing the fecal microbiome of PC 
patients and matched controls of Chinese origin. However, though a PC-associated fecal microbial signature 
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was clearly demonstrated, there was no real improvement in its specificity and sensitivity compared to the oral 
signature shown by Farrel.

Taken together, these data suggest that while PC-associated microbial signatures are easily observed, their 
translation to predictive biomarkers is not straightforward. The human gut microbiome is highly variable between 
different subjects and strongly affected by environment11. Thus, while statistically significant microbial patterns 
characterizing particular patient groups are evident, their practical value for diagnostic purposes would depend 
upon several additional factors. First, the pattern should be robust in differentiating the condition of interest from 
a wide range of other conditions, not merely from healthy control subjects. In this regard, it should be kept in 
mind that PC patients often display co-morbidities, ranging from obesity, diabetes and pancreatitis, considered 
risk factors of the disease, to biliary obstruction which is a common consequence of the disease. Secondly, the 
pattern must be reasonably consistent across all patients with a specific clinical condition. Here, we must closely 
examine variations between individuals within the same cohort, as well as between study cohorts – since origin 
and geographic location, as well as personal dietary and lifestyle habits, impact the microbiome. Finally, the pat-
tern should be evident in early disease stages; in the case of PC, an ideal biomarker should be evident in patients 
with pre-cancerous lesions, before the progression to incurable cancer.

In this study, we examined the gut microbiome alterations in PC and their potential to serve as biomarkers in 
an Israeli cohort. We compared the microbiome of PC patients to that of a pre-cancerous lesion group (PCL), a 
group composed of individuals with non-alcoholic fatty liver disease (NAFLD) and a healthy control group. We 
also associated the microbiome composition with a range of background clinical conditions, as well as serum 
biochemical markers for biliary obstruction and liver damage. Finally, we assessed microbial variance both within 
our cohort and between the Israeli and Chinese cohorts.

Materials and Methods
Subjects.  Patients presenting with pancreatic cancer (n = 30) or pre-cancerous lesions (n = 6) were recruited 
among individuals who were seen at the surgical ward or GI clinics of Rambam Health Care Campus or Meir 
Medical Center. The diagnosis was verified by histological samples obtained by EUS or by postoperative patho-
logical assessment. Pre-cancerous lesions (PCL) were defined by standard clinical criteria as a cystic lesion 
with dilated main pancreatic duct or side branch ducts; the PCL group consisted of 4 patients with low-grade 
Intraductal papillary mucinous neoplasm (IPMN), one with multifocal IPMN, and one with pancreatic intraep-
ithelial neoplasia (panIN). Control subjects (n = 13) were recruited from healthy volunteers at Rambam Health 
Care Campus and from individuals undergoing screening colonoscopy at Meir Medical Center; individuals 
under the age of 50 were excluded from analysis. An additional control group was recruited from subjects with 
non-alcoholic fatty liver disease (NAFLD, diagnosed by ultrasonography and alanine aminotransferase levels of 
(ALT) ≥ 30 U/L for male and ≥19 U/L for females), seen at Kaplan Medical Center (n = 16). Individuals who were 
exposed to antibiotics up to 8 weeks before sampling, who had a history of prior cancer, pancreatitis, acute or 
chronic intestinal inflammation, or who carry known cancer-associated mutations were excluded from analysis. 
This study received the approval of the Rambam Health Care Campus and Meir Medical Center ethics commit-
tees (study approval number: 0345-12-RMB), and all tests were performed in accordance with the relevant guide-
lines and regulations. Each participant in this study provided written informed consent.

Sample processing and DNA sequencing.  Samples from PC, PCL and NAFLD patients were collected as 
soon as possible after diagnosis and prior to any treatment, and stored at the medical facility at −80 °C. Samples from 
healthy subjects undergoing colonoscopy were collected within two weeks and transported on ice to the medical 
facility, where they were stored as above. Samples were transported to the research facility on dry ice. Fecal samples 
were stored upon procurement at the medical institute at −80 °C. DNA was extracted using the PowerSoil™ DNA 
extraction kit (MOBIO) according to the HMP (Human Microbiome Project) guidelines. PCR amplification of the 
16S rRNA gene was carried out with universal prokaryotic primers containing 5-end common sequences as previously 
described12 (CS1-341F 5′-ACACTGACGACATGGTTCTACANNNNCCTACGGGAGGCAGCAG and CS2-806R 
5′-TACGGTAGCAGAGACTTGGTCTGGACTACHVGGGTWTCTAAT). Twenty-four PCR cycles (95 °C 15 sec., 
53 °C sec. 15, 72 °C 15 sec) were conducted using the PCR mastermix KAPA2G Fast™ (KAPABiosystems); successful 
amplification was verified by agarose gel electrophoresis. Paired-end deep sequencing of the PCR products was per-
formed on an Illumina MiSeq platform at the University of Illinois at Chicago Sequencing Core (UICSQC). Sequencing 
depth ranged from 1070 to 31118 sequences per sample; to ensure data evenness, data was initially rarefied to 3 optional 
sequences depths: 1070 (retaining all study samples), 3000 (discarding 3 samples), and 9000 (discarding 4 samples). 
Similar microbial patterns were observed across all three optional depths. Data was thus rarefied to 1070 seqs/sample, 
so as to retain all samples.

Data analysis.  Demultiplexed raw sequences were quality filtered (removing bases with a PHRED quality 
score < 20), length filtered (discarding sequences shorter than 380 bp) and merged using PEAR13. Data was then 
processed with a custom workflow combining the Quantitative Insights Into Microbial Ecology (QIIME) pack-
age14 and VSEARCH15, and according to the strategy described in the UPARSE pipeline16. In brief, amplification 
primers were removed and the data were converted to a single FASTA file using QIIME scripts. VSEARCH was 
used for dereplication and OTU picking at 99% identity; to reduce spurious OTU formation, only sequences 
that appeared more than 5 times (100% similarity) were allowed to form new OTUs. Chimeric OTUs,identified 
by UCHIME17 using the GOLD.fa database as reference, were removed. Centroid sequences of the remaining 
(non-chimeric) OTUs were then used as a database, against which all the sequences, including singletons, were 
mapped to form an OTU count table. Taxonomy assignment (using UCLUST algorithm18 against Silva v128 data-
base), rarefaction, and UniFrac calculations were done using QIIME. Several well-established similarity indexes 
in microbial ecology (Bray-Curtis, Jaccard, abundance-weighted and unweighted UniFrac indexes) were used to 
calculate the distance between each pair of samples; the degree of separation between the microbiome of PC and 
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all control samples was then assessed by the ANOISM probability test. Integration with data from the Ren et al.10 
study was done utilizing taxonomical information at the OTU level. Briefly, we first reassigned taxonomy to the 
OTUs defined in our study using the RDP classifer, the method used in the Ren et al. study10. Within each study, 
we then collapsed OTUs which were assigned identical taxonomies to a single entity, preserving abundance infor-
mation, and achieving, per study, an OTU abundance table containing unique taxonomy classifications. Both 
tables were then transformed to relative abundances (RA, by Total Sum Normalization, TSS), and finally merged 
by taxa names to a single RA table used for analysis as described below.

Statistical analyses.  R vegan19 package was used to calculate Shannon diversity index, Bray-Curtis/Jaccard 
distance matrices, and ANOSIM probability tests. PCoAs were constructed using the base R function cmdscale 
and plotted with ggplot220 package. Hierarchical clustering of samples was conducted on each distance matrix 
using the hclust R function and UPGMA method, and the R package dendextend21 was used for the plotting. The 
randomForest22 and pROC23 packages were used for building classification models and plotting ROC curves. 
Kruskal-wallis statistical test, Spearman’s correlations and Benjamini-Hochberg24 corrections for multiple 
hypothesis testing were all conducted using base R functions; package dunn.test25 was used to compare values 
across multiple groups using Dunn’s test. P-values < 0.05 or q values < 0.2 were considered significant. LEfSe26 
was applied to identify which bacterial taxa contribute to the differences between the two groups; p-value for the 
1st (Kruskal-Wallis) step was set at 0.05, and LDA minimal threshold set at 3.

Results
This study was conducted on a cohort composed of 30 patients with PC and two control groups: one of healthy 
subjects (n = 13), and a second of patients with non-alcoholic fatty liver disease (NAFLD, n = 16). As gut micro-
biome may be highly sensitive to liver function, which in turn is often impaired in advanced PC, individuals with 
NAFLD but no pancreatic disorders were used as an additional, stringent control group. Six additional patients 
were diagnosed with pre-cancerous pancreatic lesions (PCL). Patient information is summarized in Table 1; addi-
tional information on the stage of cancer, when available, is presented in Supplementary Table S1. Deep amplicon 
sequencing of the bacterial 16S rRNA gene was used to assess specific features in the microbial populations asso-
ciated with each group; barplots showing detailed taxonomical composition across all four groups are provided 
in Supplementary Fig. S1. The differences in alpha diversity between PC, PCL and healthy control groups did 
not  reach statistical significance (median Shannon values: PC = 2.89, PCL = 3.04, Control = 3.1). However, the 
NAFLD group were slightly more diverse than all other groups (p = 0.01, median Shannon = 3.3, Supplementary 
Fig. S2).

Large scale differences in microbiome of PC patients and controls.  PC patients constitute a het-
erogeneous group, often suffering from a range of background conditions in addition to complications brought 
on by PC, such as diabetes (Table 1). Accordingly, the microbial composition of samples from PC patients was 
highly variable. Nevertheless, some universal changes in the microbiome of PC patients, when compared to that 
of both control (NAFLD or healthy) groups, were evident. The ratio between Bacteroidetes and Firmicutes, the 

PC

Non-alcoholic 
fatty-liver disease 
(NAFLD)

Pre-
cancerous 
lesions (PCL) Healthy

n 30 16 6 13

Age
(mean+/−s.d.) 68.9 ± 6.2 51 ± 10.8 66 ± 15.3 59 ± 8.7

Sex
(M/F) 16/14 12/4 5/1 6/7

Diabetes (%) 53 13 20 NA

High Blood
Pressure (%) 43 50 25 NA

Bile-duct
obstruction* (%) 36 0 0 0

Gall-bladder
abnormalities* (%) 46 6 0 23

Hyperlipidemia (%) 40 88 29 23

Biochemical Assays (serum, mean ± s.d.+)

Total Bl (mg/dl) 2.3 ± 2.8 0.6 ± 0.2

n.d.

Direct BL (mg/dl) 1.7 ± 2.5 0.2 ± 0.1

GGT (U/L) 474 ± 806 48 ± 28

AST (U/L) 86 ± 103 31 ± 14.5

ALT (U/L) 160 ± 199 50 ± 23

Table 1.  Patient information. *Dilated CBD (common bile duct) diameter on US or CT and\or elevated liver 
functions tests as GGT, AP and Bilirubin. **Gall-bladder abnormalities included gallstones, thickened bladder 
wall, swollenness or prior removal. +Differences in biochemical assay levels between PC and NAFLD were not 
statistically significant (p > 0.2 for all assays).
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two dominant bacterial phyla in the human gut, was higher in PC patients than in any of the control groups 
Supplementary Fig. S2). Additionally, a weak but significant degree of separation in microbial composition 
according to clinical status was observed when comparing PC to the healthy control group using the ANOSIM 
probability test (abundance-weighted UniFrac: p = 0.013, R = 15%; unweighted-UniFrac: p = 0.04, R = 13%). 
Principle Coordinate analysis (PCoA) was applied to generate a visual representation of this trend across all 
patient groups (Fig. 1). Noticeably, while some separation of PC samples from both healthy and NAFLD control 
groups is evident, there is also substantial overlap between these groups. This overlap, in agreement with the 
relatively low ANOSIM R values, implies the involvement of additional factors in determining gut microbial com-
position; this issue is discussed in detail below. The PCL group, too small to be included in statistical significance 
testing, appears to overlap both the PC and control groups (Fig. 1; see also Hierarchical clustering of samples in 
Supplementary Fig. S3).

Figure 1.  Similarity in microbial composition across different sample types. Principal Coordinate Analysis 
(PCoA) was used to visualize spatial relationships among samples according to (a) abundance-weighted 
UniFrac and (b) unweighted UniFrac distance matrices.
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Specific microbial patterns associated with PC.  The well-established feature analysis tool, LEfSe [lin-
ear discriminant analysis (LDA) effect size]26, was used to identify features which were differentially distributed 
between PC patients and the healthy control group (Fig. 2). Features discriminating PC from healthy controls 
were evident at most phylogenetic levels. Considerable under-representation of bacterial orders, families and 
genera belonging to the Firmicutes phylum was observed in the PC group, thereby corroborating the trend of a 
decreased Firmicutes/Bacteroidetes ratio in PC patients, observed at the phylum level.

A comparison of PC to the NAFLD group yielded similar results, with multiple reductions in taxa belonging 
to the Firmicutes observed in PC relative to NAFLD (Supplementary Fig. S4). However, taxa belonging to the 
Bacteroidetes phylum tended to be high in NAFLD as well as in PC and did not discriminate between these two 
groups.

The Random Forest algorithm was used to construct a classification model based on the features discriminat-
ing PC from healthy controls, identified by LEfSe. As this algorithm’s performance greatly improves with larger 
sample size, all samples from the healthy, NAFLD, and PC groups were used for this analysis (n = 59), this time 
defining both NAFLD and healthy as “Control”. 70% (n = 41) of the samples were randomly chosen to train the 
classifier, and the remaining 18 samples were used for validation (Fig. 2b). In spite of the heterogenous nature of 
the Control group, an AUC value of 82.5% (CI: 63.6%-100%) was achieved for the validation set, with a specificity 
of 0.8 and sensitivity of 0.77.
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Figure 2.  Microbial features characterizing PC. (a) Bacterial taxa identified by LEfSe as differentiating between 
PC patients (red) and healthy control subjects (green). Phylogenetically related bacterial taxa are denoted by 
connecting branches. (b) ROC curve of a random forest model, trained on the features identified in (a).
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Additional clinical factors affecting the microbiome.  As a number of the background conditions often 
found in PC patients have been previously shown to affect the microbiome, we proceeded to investigate whether 
PC-associated microbial patterns are dependent on additional clinical factors. First, we used the ANOSIM 
probability test to examine the effect of each of five clinical variables- bile duct obstruction, diabetes, hyperlipi-
demia, high blood pressure, and gall-bladder abnormalities- on the microbiome of PC patients. As shown in 
Supplementary Table S2, bile duct obstruction was the only variable to exert a significant, though minor, effect 
on the microbiome (p = 0.03, R = 13%, Bray-Curtis distance index; for the other clinical factors tested, p-values 
ranged from 0.2 to 0.8). To infer whether bile-duct obstruction was the main factor affecting PC microbiome, we 
repeated the Control vs. PC ANOSIM test of significance, using only samples from PC patients who had no bile 
duct obstruction (n = 16). Significant, though weak, separation between Control and non-obstructed PC was still 
observed (ANOSIM p = 0.01, R = 13%, Bray-Curtis index).

The LEfSe biomarker discovery tool was then used to identify which specific bacterial taxa contribute to the 
difference between bile-duct obstructed (BO, n = 11) vs. non bile-duct obstructed (NBO, n = 16) PC, as well 
as to the difference between healthy controls (n = 13) vs. NBO PC. Both these subsets of marker taxa could 
then be compared to the entire set of taxa that discriminates healthy controls from all PC (including both BO 
and NBO PC, shown in Fig. 2a). Of note, there was very little overlap between the PC-associated taxa and 
biliary-obstruction-associated taxa (Fig. 3a). Only 1 taxon, the Veillonellaceae family, was found to be associated 
with both biliary obstruction and PC; however, different genera of this family were associated with each condi-
tion: the genus Veillonella was associated with biliary obstruction (Fig. 3b), while the genus Megasphaera was 
associated with PC. Conversely, the set of taxa discriminating non-obstructed PC from controls recapitulated 
much of the all-PC vs Controls microbial signature (Fig. 3a,c).

Additional microbiome changes may be a secondary consequence of PC.  As bile duct obstruction 
usually leads to increased serum bilirubin levels (direct BL levels in unobstructed PC patients: 0.13 mg/dl, sd: 0.08; 
in obstructed patients: 2.6 mg/dl, median: 2.5; Kruskal-Wallis p = 0.004), we also examined correlations between 
bacterial genera and serum bilirubin levels (Supplementary Table S3). Interestingly, almost all (16/17) of the 
strongest correlations were negative, and mainly involved genera of the Clostridiales order (Spearman’s R = −0.5, 
p = 0.009 for the strongest correlation). The only positive correlation between bacteria and bilirubin was found for 
Prevotella9, the same genus we had identified as biliary-obstruction-associated in the section “Additional clin-
ical factors affecting the microbiome” (Spearman’s R = −0.36, p = 0.065). However, these results did not reach 
statistical significance following p-value correction for multiple hypothesis testing (best q-value 0.23, FDR24). A 

3

NBO PC vs. BO PC
(Non bile-duct Obstructed PC 

vs. Bile-duct Obstruced PC)

All PC vs. Control

NBO PC vs. Control
1

7

64

b.

c.

a.

Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella

Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae

Firmicutes;Negativicutes;Selenomonadales

Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella9

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia

−2.5 0.0 2.5 5.0
LDA

Group
CBD obstruction
No CBD obstruction

Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Akkermansia

Bacteroidetes;Bacteroidia;Bacteroidales

Tenericutes;Mollicutes;MollicutesRF9;unculturedbacterium;unculturedbacterium

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Faecalibacterium

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae

Firmicutes;Clostridia;Clostridiales;Clostridiaceae1;Clostridiumsensustricto1

−5.0 −2.5 0.0 2.5 5.0
LDA

Group
Control
PC (No CBD Obstruction)

Figure 3.  A different set of biomarker taxa is associated with PC and bile-duct obstruction. (a) Venn diagram 
showing the number of taxa shared between the three marker taxa sets identified in LEfSe comparisons. 
NBO PC: Non-Bile duct-Obstructed PC; BO PC: Bile duct-obstructed PC. (b) Taxa identified by LEfSe as 
differentiating between BO PC and NBO PC patients. (c) Taxa identified by LEfSe as differentiating between 
healthy controls and “pure”, NBO PC patients.
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similar profile, yet more statistically robust, was obtained when correlating the genera to the GGT enzyme serum 
levels, an additional, often earlier, marker of biliary obstruction (Table 2).

As pancreatic cancer and bile-duct obstruction are often associated also with elevated liver enzyme levels, we 
went on to correlate microbial composition with serum levels of liver enzymes, serving as markers of impaired 
liver function. Both AST and ALT were available for the PC patients in this cohort. As we found the 2 mark-
ers to be strongly inter-correlated (Pearson’s R = 0.9, p = 5.4E-11), and since we observed similar microbial/
enzyme-levels associations across both assays, only the correlations to ALT are shown (Table 3).

The correlation profile of liver-damage-markers to microbiome mirrors that observed for biliary-obstruction 
markers to microbiome. All the strongest associations between relative abundance of microbial taxa and 
liver-enzyme serum-levels were negative (Table 3), with the sole exception of Prevotella 9. As bacterial composi-
tion is based on relative abundances, a large increase in one taxon may be mistakenly interpreted as reductions 
in other taxa. To account for this possibility, we repeated the correlation analysis after removing Prevotella 9 
from the data and recalculating relative abundances for all other taxa, in its absence. This procedure had almost 
no effect on the correlation analysis results (Rho values for the significantly correlated taxa changed by less than 
5%). Taken together, these data suggest PC-associated liver-damage disrupts the normal gut equilibrium, driving 
reductions in multiple normal gut-residing bacteria.

Liver-assay tests and bilirubin levels were also available for the cohort of non-alcoholic fatty liver patients 
(n = 16), enabling analysis of microbiome/functional-markers interactions independent of a PC status. It should 
be noted that for fatty-liver patients, the inter-patient variation of all five biochemical markers was much lower 
than among the PC patients (Supplementary Table S4). That being said, microbiome associations with biliary 
obstruction markers (bilirubin and GGT) were still observed, but of a different nature then in PC patients. 
Specifically, only one taxon was correlated to GGT (Lachnoclostridium, R = −0.764, p = 0.001, q = 0.077). Several 
taxa were correlated to bilirubin (Table 4); but, while in PC patients we observed multiple negative reductions 
across the Clostridiales order, in fatty-liver patients only the genus Dialister, of the Selemondales order, was neg-
atively correlated to bilirubin. Conversely, we observed three positive microbial/bilirubin correlations in the 
fatty-liver group, none of them to Prevotella 9. No correlations to either AST or ALT were found in the fatty-liver 
patient group.

Intra-cohort variation.  To explore possible diagnostic value of PC-associated microbial patterns, we 
focused on 10 bacterial genera that had been identified in LEfSe analysis as being either under-represented or 

Taxon R p FDR

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Subdoligranulum −0.626 0.001 0.038

Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured −0.651 0.001 0.038

Firmicutes;Clostridia;Clostridiales;Christensenellaceae;Christensenellaceae R-7 group −0.563 0.004 0.103

Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila −0.515 0.01 0.192

Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium −0.42 0.041 0.21

Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Butyricimonas −0.424 0.039 0.21

Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella 9 0.466 0.022 0.21

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Anaerostipes −0.429 0.036 0.21

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Blautia −0.453 0.026 0.21

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Fusicatenibacter −0.423 0.04 0.21

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Lachnospiraceae NK4A136 group −0.485 0.016 0.21

Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;[Ruminococcus] torques group −0.43 0.036 0.21

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminiclostridium 5 −0.465 0.022 0.21

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae UCG-014 −0.464 0.022 0.21

Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Holdemanella 0.42 0.041 0.21

Table 2.  Bacterial genera correlating with serum GGT levels in PC patients. Spearman’s correlation method was 
used, followed by FDR-based p-value adjustment, Correlations with q < = 0.21 are shown.

Taxon R p FDR

Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured −0.692 <0.001 <0.001

Firmicutes;Clostridia;Clostridiales;Christensenellaceae;Christensenellaceae R-7 group −0.582 0.003 0.077

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Subdoligranulum −0.579 0.003 0.077

Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella 9 0.527 0.008 0.139

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae UCG-014 −0.524 0.009 0.139

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminiclostridium 5 −0.474 0.019 0.209

Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila −0.479 0.018 0.209

Table 3.  Bacterial genera correlating with serum ALT levels in PC patients. Spearman’s correlation method was 
used, followed by FDR-based p-value adjustment, Correlations with q < = 0.21 are shown.
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overrepresented in PC when compared to healthy controls (shown in section “Specific microbial patterns asso-
ciated with PC”, Fig. 2). We closely examined these potential biomarker genera in a broader context, comparing 
their abundance patterns across multiple subject groups - the NAFLD subject group (n = 16), and a pre-cancerous 
pancreatic lesions group (PCL, n = 6), as well as our original PC and healthy control groups. From this per-
spective, promising biomarkers should show a similar trend for PC and PCL, when compared to both healthy 
and fatty-liver control groups. To address consistency issues, we also examined the relative abundance of each 
of these discriminatory genera across each of the subjects in our cohort (for summary boxplots across the PC, 
PCL, NAFLD and healthy groups, as well as per-subject barplots, for each of the PC discriminating genera, see 
Supplementary Fig. S5).

For the most part, the genera we examined showed the same trend in the NAFLD control group as in the 
healthy control group. The exceptions were Megasphaera and Lachnospiraceae UCG_008, both of which were 
overrepresented in NAFLD as well as in PC. However, most potential biomarker genera did not display similar 
trends in the PCL and PC groups. Furthermore, all of the discriminatory taxa were highly variable between indi-
viduals, across all subject groups. These trends are illustrated in Fig. 4, using as an example two of the discrimi-
natory genera: Akkermansia, in our dataset associated with PC (Fig. 4a); and Clostridium sensu stricto 1, in our 
dataset associated with healthy subjects (Fig. 4b).

Taxon Rho p FDR

Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister −0.822 <0.001 <0.001

Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes 0.737 0.001 0.026

Firmicutes;Negativicutes;Selenomonadales;Acidaminococcaceae;Phascolarctobacterium 0.764 0.001 0.026

Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminiclostridium 6 0.632 0.009 0.173

Table 4.  Bacterial genera correlating with bilirubin levels in fatty liver patients. Spearman’s correlation method 
was used, followed by FDR-based p-value adjustment, Correlations with q < = 0.21 are shown.
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Figure 4.  In-depth exploration of two representative PC discriminating taxa. A boxplot, portraying summary 
statistics across the different groups, and a corresponding barplot, portraying the relative abundance in each 
individual, are shown for the PC-associated Akkermansia (a), and the control-associated Clostridium sensu 
stricto 1. (b) In the boxplots, lines indicate median relative abundances, boxes denote 3rd and 1st quantile, 
whiskers denote ± 1.5*IQR, and outliers are shown as dots.
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Inter-cohort comparisons.  These results mirror, to a certain extent, those recently published by Ren et al.10 
in a similar study comparing PC patients and controls in a Chinese cohort. Both cohorts showed a similar trend 
at the phylum level, with an increase of Bacteroidetes and a decrease of Firmicutes in PC patients. This similar-
ity extended, in part, to finer taxonomic levels; Anaerostipes and genera belonging to Erysipelotrichaeceae and 
Clostridiaceae decreased in PC, while genera belonging to Veillonellaceae increased in PC, across both cohorts.

Figure 5.  Both origin and disease effects are evident in an integrative analysis of two cohorts. Data from a 
Chinese cohort10 was integrated with our own to form a merged dataset for analysis. (a) PCoA of Jaccard 
distance matrix. (b) Boxplots of key phyla across cohort and type. (c) LEfSe analysis identifies disease 
discriminating taxa in the integrated dataset. (d) ROC of a random forest model built on the features identified 
in (c). In the boxplots, lines indicate median relative abundances, boxes denote 3rd and 1st quantile, whiskers 
denote ± 1.5*IQR, and outliers are shown as dots.
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To explore inter-cohort similarities and differences in greater detail, we merged our data with data publicly 
available from the Ren study (Methods section), forming a uniform dataset for analysis. Notably, sample ori-
gin (Israeli or Chinese) exerted the strongest effect on sample composition (Fig. 5a). This effect is driven partly 
by differential representation of the less-common gut taxa across the two cohorts (39 taxa were unique to the 
Chinese cohort, and 63 to the Israeli cohort); and partly by highly increased abundance of taxa belonging to the 
Bacteroidetes phylum, and decreased abundance of the Firmicutes phylum, across the entire Chinese cohort com-
pared to the Israeli one (p < e−6). Due to this latter feature, when the Random Forest classifier that was trained 
on our data was applied to the Chinese data, all of the Chinese samples (both PC and Control) were classified as 
PC. Nevertheless, within each cohort, similar PC-associated patterns were clearly observed (Fig. 5b). A Random 
Forest classifier built on the integrated dataset (by first identifying the most relevant features for this dataset using 
LEfSe, Fig. 5c) was able to classify both Israeli and Chinese samples with a specificity of 0.66 and 0.71, respec-
tively, and a sensitivity of 0.9 and 0.81 respectively (Fig. 5d). These values are not as high as those obtained for 
each dataset alone, but are much better than random, and support the view that PC-specific dysbiosis is evident 
in two independent human populations.

Discussion
The advancements in molecular methods for microbiome characterization over the past decade have spurred an 
expansion of studies exploring the composition of the human gut microbiome. Taken collectively, these studies 
show the gut microbiome to be a complex environment, affected by numerous genetic and environmental fac-
tors11,27,28. While the microbiome greatly varies between individuals, most of this variation falls within the scope 
of what might be termed a “healthy gut microbiome”. Microbial dysbiosis, or a deviation from this equilibrium, 
has been described for a variety of disease, among them diabetes29, liver cirrhosis30, and inflammatory bowel 
disease31.

In this study we find a distinct PC-associated gut microbiome signature in an Israeli cohort, manifesting 
primarily as an under-representation in several bacterial families prevalent in the healthy gut - Clostridiacea, 
Lachnospiraceae, and Ruminococcaceae; and an over-representation of Veillonellaceae, Akkermansia and 
Odoribacter. This signature was distinct from that of common PC co-morbidities which also affected the micro-
biome, such as bile-duct obstruction and liver damage.

Several of the PC-associated microbial characteristics of our cohort were similar to those of a previous study 
conducted on a Chinese cohort10. When integrating both datasets to a combined analysis, we found extensive 
differences in microbial composition between the Israeli and Chinese cohorts. These differences are probably 
driven not only by diet and ethnic origin, but also by differences in methodology; in particular, the different 
DNA extraction methods that were used. Nevertheless, the existence of similar trends across both these cohorts 
suggests many PC-associated microbial patterns are highly robust.

One of the promising aspects of microbiome research is the possibility of utilizing microbial patterns for 
development of diagnostic tools, based on bacterial “biomarkers”. However, translation of a disease-associated 
microbial signature into effective diagnostic biomarkers is not straightforward, and must address potentially con-
founding issues, such as the inherent variability between cohorts of different origin as well as between individuals 
within each cohort. The strong effect of origin we found in our integrated cohort analysis illustrates that specific 
classifiers should be trained for specific patient populations. However, even in the “best” case, the specificity of 
our microbial classifiers was between 0.7 to 0.8; similar values were reported by Ren et al. For a low-incidence 
disease such as PC (with an odds ratio of ~1:20000), these specificity values would translate to approximately 
4,000 false positives per each true diagnosis. The disparity between existence of robust disease-associated features 
identified by LDA, and the limited classification power of these same features, probably stems from the high var-
iability of microbial features across individuals.

As late-stage PC is almost impossible to treat, a vital criterion for PC biomarkers is recognition of the disease 
at a very early stage. A major limitation of this study was the small size of the PCL group, which did not provide 
sufficient statistical power. Future studies enrolling larger numbers of subjects with pre-cancerous lesions or 
very early-stage PC may thus reveal additional microbial patterns. However, the effects of PC on gut microbiome 
are probably mediated primarily via alterations in pancreatic exocrine secretions to the digestive system, and 
therefore are expected to increase as tumor size increases. Thus, the difficulties we encountered in translating 
robust microbial patterns to actual PC classification are likely to be even more extensive when attempting to 
identify early-stage PC. However, a feasible approach may be to combine several microbial features with other 
non-invasive biomarkers, such as the serum biomarker CA19-9 which is of limited use in PC detection, or urinary 
biomarkers currently being investigated32, for increased accuracy.

Summary.  A distinct PC-associated fecal microbiome signature, resembling findings previously reported in 
a Chinese cohort, was observed in this study. However, given the low incidence of PC and the high variability in 
microbiome both within and between the cohorts, harnessing microbial patterns for diagnostic purposes may 
only be practical if combined with additional biomarkers.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding author 
on reasonable request. All sequence data is available from NCBIs Sequence Read Archive (SRA), BioProject ID: 
PRJNA575620.
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